Identification and characterization of a novel serine-arginine-rich splicing regulatory protein.
نویسندگان
چکیده
We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.
منابع مشابه
Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.
Many splicing factors in vertebrate nuclei belong to a class of evolutionarily conserved proteins containing arginine/serine (RS) or serine/arginine (SR) domains. Previously, we demonstrated the existence of SR splicing factors in plants. In this article, we report on a novel member of this splicing factor family from Arabidopsis designated atRSp31. It has one N-terminal RNA recognition motif a...
متن کاملSelection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences.
Splicing enhancers are RNA sequences required for accurate splice site recognition and the control of alternative splicing. In this study, we used an in vitro selection procedure to identify and characterize novel RNA sequences capable of functioning as pre-mRNA splicing enhancers. Randomized 18-nucleotide RNA sequences were inserted downstream from a Drosophila doublesex pre-mRNA enhancer-depe...
متن کاملMolecular Medicine Cdc2-Like Kinases and DNA Topoisomerase I Regulate Alternative Splicing of Tissue Factor in Human Endothelial Cells
Tumor necrosis factor (TNF)–stimulated human umbilical vein endothelial cells express 2 naturally occurring forms of tissue factor (TF), the primary initiator of blood coagulation: the soluble alternatively spliced isoform and the full-length TF isoform. The regulatory pathways enabling this phenomenon are completely unknown. Cdc2-like kinases and DNA topoisomerase I regulate alternative splici...
متن کاملCdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells.
Tumor necrosis factor (TNF)-alpha-stimulated human umbilical vein endothelial cells express 2 naturally occurring forms of tissue factor (TF), the primary initiator of blood coagulation: the soluble alternatively spliced isoform and the full-length TF isoform. The regulatory pathways enabling this phenomenon are completely unknown. Cdc2-like kinases and DNA topoisomerase I regulate alternative ...
متن کاملLocalized expression of the Drosophila gene Dxl6, a novel member of the serine/arginine rich (SR) family of splicing factors
Members of the highly conserved family of serine/arginine rich (SR) splicing factors play an essential role in the recognition of the exonic splicing enhancers that control the choice of splice sites in primary transcripts. Here, we report the cloning and the expression pattern of Dxl6, a novel Drosophila member of this protein family. Dxl6 is located on the second chromosome in a position next...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2000